Abstract:The macrokinetics of dimethyl carbonate (DMC) synthesized by the gas-phase oxidative carbonylation of methanol over PdCl2-CuCl2-KOAc/AC was investigated in the fixed-bed reactor. The kinetic model of power functions presented by the form of partial pressures of carbon monoxide, oxygen and methanol was established. The statistic test showed that the model had high credibility. Based on the macrokinetics model, a two-dimensional pseudo-homogeneous fixed-bed reactor model of this process was established. The effects of space velocity, feed composition, inlet temperature and operating pressure on the process were simulated and analyzed by Matlab, respectively. The results showed that the hot-spot in the reactor was greatly influenced by the operating pressure and the space velocity, while the conversion of methanol and the selectivity of DMC to CO were largely influenced by the feed composition. The optimum operating conditions of dimethyl carbonate synthesis by the gas-phase oxidative carbonylation of methanol over PdCl2-CuCl2-KOAc/AC was determined as follows: the volume ratio of CH3OH/CO/O2 was 0.20:0.27:0.53, the space velocity was 7 500 h-1, the inlet temperature was 160 ℃ and the operating pressure was 0.30 MPa. The hot-spot temperature was found to be 214.96 ℃, the methanol conversion was 51.69% and the selectivity of DMC to CO was 65.92% under this condition.
Yan Yahui,Ding Xiaoshu,Wang Shufang et al. Macrokinetics and Numerical Simulation of the Dimethyl Carbonate Synthesis in the Fixed-Bed Reactor[J]. 化学反应工程与工艺, 2016, 32(3): 252-260.