Abstract:In order to develop the new model and experimental research of ethoxylation process, a pilot-scale three-section tubular reactors was proposed and built for the synthesis of ethylene glycol monoethyl ether (EGMEE) from ethylene oxide (EO) and ethanol. Aspen Plus software platform was used to carry out the simulation of the process. The key operation parameters including EO feed location, feed flow rate, molar feed ratio of ethanol to EO and ways of heat exchange were examined to investigate their effects on EO conversion, the selectivity of EGMEE and hot point temperature so as to obtain the optimum operation mode and operation parameters. The simulation results showed that there exists a complex trade-off between reaction and heat transfer in tubular reactors. The profile of EO concentration along the tube was the key factor to EO conversion, selectivity of EGMEE, reaction heat removal and process safety. Using multistage charge of EO and multistage cooling were important means to improve the stability and safety of the addressed reactor process.
An Weizhong 1,Jiang Jibao 1,Lin Zixin 1 et al. Simulation on Process of the Tubular Reactor for the Synthesis of Ethylene Glycol Monoethyl Ether[J]. 化学反应工程与工艺, 2016, 32(1): 8-14.